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A REPRESENTATION OF JACCHIA'S THERMOSPHERIC MODELS

IN SPHERICAL HARMONICS

P. Blum and I. Harris

ABSTRACT

The Jacchia models are represented in terms of spherical harmonic

functions. This representation has the advantages of ease of comparison

with theoretical and other observational models and data, mathematical

analyticity and relative simplicity. The symmetry properties of the

models are emphasized by this representation and some physical char-

acteristics like the increase of the amplitude of the diurnal density

variation with decreasing solar activity become more apparent.
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A REPRESENTATION OF JACCHIA'S THERMOSPHERIC MODELS

IN SPHERICAL HARMONICS

The semi-empiric Jacchia thermospheric models (Jacchia 1965, 1970 and 1971)

describe thermospheric densities as derived from satellite drag analysis. The

densities are obtained in the models from a semi-empiric temperature profile

and the global distribution of exospheric temperature. The exospheric tempera-

tures are model parameters that are not necessarily identical with the true

kinetic temperatures.

In the Jacchia models the exospheric temperature depends upon the solar

activity F, the average solar activity F during several solar rotation periods,

the geomagnetic activity index Kp, the day in the year, the local solar time

(diurnal variation) and the latitude. The variation of exospheric temperature

with local time and with latitude is given by a single mathematical expression;

i.e., the distribution of exospheric temperature on the globe where the longitude

is measured with respect to local noon.

In Jacchia's model (1971) the exospheric temperature is given (in his notation)

by:

1+ R sinm 0Too =Tc (lRS( 1 + O s ( 1 + R sinm COS3 ()) (1)

where Tc depends only upon solar and geomagnetic activity.

Tc = 3790 + 3°.24F + 103 (F - F) + 28°Kp + 0°03 exp (Kp)

T = H + + p sin (H + y) (- 7< - < 7r)
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where b is the latitude, $ the declination of the Sun, H the LST counted from

local noon, , = -37 ° , p = 6° , m = 2.2, R = 0.3, and y = 43 ° .

This representation of the exospheric temperature includes absolute values;

therefore it is not analytic. Especially its derivative does not exist at the poles

(Blum and Harris, 1973). Jacchia's expression for the exospheric temperature

distribution may be approximated by a sum of spherical harmonic functions.

Such an approximation is useful because it allows a direct comparison with

thermospheric models derived from other considerations like mass-spectrographic

data (Hedin et al., 1973) or a theoretical treatment (Harris and Priester, 1962;

Mayr, Harris and Volland, 1973). Furthermore, analytic expressions are handled

with greater mathematical ease. The pressure gradients, which drive the thermo-

spheric wind system, can only be calculated for the entire globe if the tempera-

ture is an analytic function.

In Jacchia's model the exospheric temperature is given as the product of the

global minimum exospheric temperature, T¢, and an expression for the tempera-

ture dependence on latitude, local time and the declination of the sun; i.e. the

day in the year. Thus

To(F, F, Kp, , tA, te) = Tc (F, F, Kp) . G (, tA, te) (2)

where tp is the local time and tA the day in the year.
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We have for the moment excluded the semi-annual variation as it will be treated

separately. The above factorization of the exospheric temperature representation

allows us to express the exospheric temperature in a simple, though very general,

form as a sum of spherical harmonic functions Pnm (x) where x is the cosine of

the colatitude.

To ( T< anm (tA) Pnm(x) COS (m t ) + nm (tA) Pm (X) sin (m e (3)
n=O m=O

For the numerical results of this paper we have used the usual normalization of

the spherical harmonic functions (Jahnke-Emde, p. 111). To is the mean global

exospheric temperature that depends on F, F and K

Expression (3) can be further simplified by making use of the following properties

of Jacchia's model:

(a) The phase of the diurnal variation is independent of latitude and season.

Therefore, the cosine and sine terms of the various modes (i.e. the a

and P) can be combined so that all the Pnm that have the same local time

mode, m, have the same phase t.

(b) The coefficients amn and /3mn depend only on the day in the year and can

be expressed as a sum of Fourier modes with the argument the day in

the year. These Fourier expressions become particularly simple if the

days are counted from vernal equinox. Then only sine coefficients ap-

pear in the symmetric terms (i.e. Pm with n - m = 2k) and cosine coef-

ficients in the antisymmetric terms (n - m = 2k + 1). This property is

due to the symmetry of the exospheric temperature distribution at equinox.

3



(c) The third harmonic of the diurnal variation has an amplitude that is

less than 0.02 of the amplitude of the fundamental. This is less than

the accuracy of drag data and has no physical significance in the Jacchia

model. For this reason we have not included the third harmonic in the

representation of the temperatures. Due to the non-linearity of the ex-

ponential function the relative amplitude of the third harmonic of the

density distribution is slightly enhanced. We have included it in the

analysis of the density distribution although its physical significance

for the densities is equally doubtful.

4. A numerical analysis shows that no terms pm with n > 4 occur with ampli-

tudes larger than 5.10 - 4 of the amplitude of the mean global term P0°. Expres-

sion (3) simplifies therefore to

To = T E n 'Ynm (tA x) o s m (4) t mmO n(4)m

with

Tnm(tA) = (s) COS k tA + (ka) sin k t A (5)
k=O

and O0(0° s) normalized to unity.

The analysis also shows that no higher harmonics than the semi-annual appear

in the Fourier analysis of the coefficients ynm (tA). It should be noted that the

semi-annual terms that appear in (5) arise from the variation of the declination

of the sun and are quite small. These semi-annual terms should not be confused

with the main semi-annual terms that are associated with the semi-annual effect.
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Table 1 shows the numerical values of the various terms when the yearly average

global term P0 is normalized to unity. Thus Table 1 is independent of solar

activity. The relationship between the global minimum exospheric temperature

T c in the Jacchia model and the global mean exospheric temperature used here

is given by

To = 1. 1275 Tc

A synthesis of the exospheric temperatures based on Table 1 deviates less than

1% from Jaachia's original representation. Considering the accuracy of drag

data, no loss of physical significance results from the use of this representation

as compared to the original model.

THE SEMI-ANNUAL EFFECT AND THE GEOMAGNETIC ACTIVITY EFFECT

In the Jacchia models the semi-annual and the geomagnetic activity correction to

the exospheric temperature have no latitudinal dependence. They modify only

the Po terms after the yearly average global term PoO, is normalized to unity.

As the geomagnetic activity effect has no periodic time dependence, it is simply

included in the global average T. term and so causes no change in the numerical

values of the coefficients given in Table 1. It should be noted that other empirical

models of the thermosphere (Hedin et al., 1973) have deduced a latitudinal depen-

dence of the geomagnetic activity effect.

In the 1965 and 1970 Jacchia models the semi-annual variation was expressed as

a correction to the exospheric temperature. We have Fourier analysed this cor-

rection and obtained
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Tsa = F (0.2203 · cos (t A - 283.7 d) + 0.3309 · cos 2 (t A - 30 d)
(6)

+ 0.0762 cos 3 (t A - 10.3 d))

The mean annual value of Tsa is insignificant and has been neglected. The third

annual harmonic has little physical significance, but we have included it in the

semi-annual modification given in Table 1. The semi-annual temperature ampli-

tude is directly proportional to the solar activity F, but the global mean exospheric

temperature is only linearly dependent on F. To generalize the semi-annual cor-

rection given in Table 1 for various values of solar activity we have to multiply

the semi-annual amplitudes by a function of F. This function is approximated

by F sa:

Fsa = 1 + 0.296 1'00 ) - 0.124 100 3 (7)

In the Jacchia 1971 model the semi-annual variation is given in terms of densities

and not temperatures; therefore it cannot immediately be included in a modifica-

tion of Table 1.

REPRESENTATION OF DENSITIES

The thermospheric densities are obtained in the Jacchia models from the tem-

peratures by adopting lower boundary densities and assuming diffusive equilibrium.

Due to the non-linearity of the exponential function the relative amplitudes of the

various spherical harmonic functions are altitude-dependent. There is also a

dependence on solar activity. For this reason the direct representation of the

densities as a sum of spherical harmonics is less useful then the representation

6



of the exospheric temperature because even the normalized coefficients depend

on two parameters: altitude and solar activity. We have given the density repre-

sentation at a solar activity of F = 150 for the altitudes 300, 400 and 500 km in

Tables 2- 4. These tables do not include the global semi-annual variation.

Some spherical harmonic functions that did not appear in the analysis of the

temperature, because their normalized amplitude was less than 5 · 10 - 4 (the

threshhold we have chosen), will have larger amplitudes in the analysis of the

densities due to the non-linearities and appear in the Tables 2 -4.

The decomposition of the global semi-annual density variation PSA (tA) into

Fourier modes according to the 1971 Jacchia model was given by Volland, Wulf-

Mathies and Priester (1972). Our independent analysis gave almost identical

results. Following Volland et al. the density correction at a height of 400 km is

given by

PSA(ty)
p = 0.1034 cos (ty - 4 d) + 0.1999 cos 2 (ty - 109 d)

+ 0.0394 cos 3 (ty - 66 d) + 0.0188 cos 4 (ty - 14 d)

(8)

where t is the day in the year counted from January 1.

Our results are

PSA(tS)
0.1048 cos (tA - 288 d) + 0.2025 cos 2 (tA - 28 d)

P

+ 0.0399 cos 3 (tA - 107 d) + 0.0191 cos 4 (tA - 24.6 d)

= 0.0255 cos tA - 0.1016 sin tA + 0.1155 cos 2 tA + 0.1664 sin 2 tA

+ 0.0290 cos 3 tA - 0.0275 sin 3 tA - 0.0024 cos 4 tA + 0.0189 sin 4 tA

(9)
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Table 5 gives the density representation including the global semi-annual effect

at a height of 400 km and a solar activity of F = 150.

The representation of the drag data in terms of spherical harmonics given in

this paper has the advantage of being analytic and relatively simple; i.e. using

a small number of constants. It is transparent both from a mathematical and

physical point of view and allows the evaluation of the physical significance of 4

some properties of drag data results.
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Table 1

Exospheric Temperature Distribution of the Jacchia Model

(Independent of Solar Activity)

(Excluding Global Semi-Annual Effect)

Coefficients of Spherical Harmonics

Yearly Average Annual Semi-Annual Third Annual
Spherical Harmonic

cos (0) cos tA sin tA cos 2tA sin 2 tA cos 3 tA sin 3 tA

Po 1.00

PO .0528

PO .0054 -. 0007

PO .0022

PO4 .0041 .0006

PO5

P cos (tf - t) .1300 .0056

P2 cos (t - t) .0022

P 2 cos 2 (te - t2 ) .0077

To include global semi-annual effect replace PO° line by:

PO 1.00 .0056 FSA -. 0326 FSA .0249 FSA .0427 FSA .0064 FSA -. 0095 FSA

t = 14.4

t2 = 1.89

tA is measured in days from the vernal equinox

te is measured in hours from midnight
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Table 2

Density Distribution of the Jacchia Model

Height = 300 km F = 150

(Excluding Global Semi-Annual Effect)

Coefficients of Spherical Harmonics

Spherical Yearly Average Annual Semi-Annual Third Annual

Harmonic cos (0) cos tA sin tA cos 2 tA sin 2 tA cos 3 tA sin 3tA

PO 1.0 -.0013

pO .1416 .0009

P .0126 -.0025

pO .0074

po .0112 .0015
4

po
5

Pi cos (te - t1 ) .3492 .0150

P2 cos (te - tl) .0081

P3 cos (te - t1 ) .0013 .0008

P22 cos 2 (te - t 2) .0217 .0009

P2 cos 2 (te - t2 )

P42 cos 2 (te - t 2) .0012

p52 cos 2 (te - t 2)

P3 cos 3 (t - t 3 ) .0007

= 14.40 t 2 = 1.91

is measured in days from the vernal

t 3 = 3.5

equinox te is measured in hours from midnight

I-.
I-

tA

tA



Table 3

Density Distribution of the Jacchia Model

Height = 400 km F = 150

(Excluding Global. Semi-Annual Effect)

Coefficients of Spherical Harmonics

Spherical Yearly Average Annual Semi-Annual Third Annual

Harmonic cos (0) cos tA sin tA cos 2 tA sin 2 tA cos 3 tA sin 3 tA

PO 1.000 -.0018

1 .2091 .0013

Po .0045 -. 0078

PO .0104 .0007

PO .0163 .0018

PO

P' cos (te - t ) .5173 .0219

P21 cos (t - tl) .0250 .0007

PI cos (te - t ) .0019 .0007

P2 cos 2 (te - t2 ) .0396 .0021

P32 cos 2 (te - t2 ) .0010

P42 cos 2 (t - t2) .0018

p52 cos 2 (te - t2 )

P3 cos 3 (te - t3 ) .0009

= 14.39 t 2 = 2.00

is measured in days from the vernal

t 3 = 4.4

equinox te is measured in hours from midnight

D'

t 1

tA



Table 4

Density Distribution of the Jacchia Model

Height = 500 km F = 150

(Excluding Global Semi-Annual Effect)

Coefficients of Spherical Harmonics

Spherical Yearly Average Annual Semi-Annual Third Annual

Harmonic cos (0) cos tA sin t A  cos 2 tA sin 2 tA cos 3tA sin 3tA

PO 1.000 -.0022

Po .2726 .0016

PO -. 0104 -. 0149

PO .0121 .0006

Po .0211 .0018

Po .0017

Pi cos (te - t1 ) .6759 .0284

P, cos (te - t1 ) .0476 .0014

P1 cos (te - t1 ) .0021

P2 cos 2 (te - t 2 ) .0604 .0034

P32 cos 2 (te - t 2 ) .0025

P4 cos 2 (te - t 2 ) .0024

P3 cos 3 (te - t3 ) .0016

t1 = 14.37 t 2 = 2.05

tA is measured in days from the vernal

t 3 = 5.1

equinox te is measured in hours from midnight

c-



Table 5

Density Distribution of the Jacchia Model

Height = 400 km F = 150

(Including Global Semi-Annual Effect)

Coefficients of Spherical Harmonics

Spherical Yearly Average Annual Semi-Annual Third Annual

Harmonic cos (0) cos tA sin tA cos 2 tA sin 2 tA cos 3 tA sin 3 tA

Po 1.000 .0251 -.1004 .1122 .1642 .0286 -.0271

P1 -. 0106 .0175 .1973 .0075 -. 0152 .0135

P2 .0040 -. 0007 -. 0073 .0007

Po .0009 .0099 -.0008 .00133

P4 .0164 .0005 -.0016 .0036 .0027 .0005 -. 0005

P5

PI' cos (te - tl) .5186 .0136 -.0511 .0808 .0851 .0151 -.0150

P2 cos (te - t1 ) -.0013 .0021 .0237 .0009 -.0018 .0022

P3 cos (te - t 1) .0019 .0009

P2 cos 2 (te - t 2 ) .0397 .0010 -.0039 .0065 .0065 .0012 -. 0012

P3 cos 2 (te - t 2 ) .0010

P4 cos 2 (te - t2 ) .0018

P3 cos 3 (te - t3 ) .0009

t, = 14.40 t = 2.00 t3 = 4.4

tA is measured in days from the vernal equinox te is measured in hours from midnight
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